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Abstract. The Painlevt property for partial differential equations (PDES) proposed by Weiss 
et a1 is studied for a system of PDES, namely the reduced Maxwell-Bloch ( R M B )  equations. 
The R M B  equations describe the propagation of short optical pulses through dielectric 
materials with a resonant non-degenerate transition. We demonstrate that the RMB system 
passes the Painlevt test, and we construct a Backlund transformation and solutions of the 
RMB equations. 

1. Introduction 

It is known that the Maxwell-Bloch (MB) equations describe the propagation of short 
( s) optical pulses in resonant media. The associated reduced Maxwell-Bloch 
(RMB) equations 

U ,  = -pv, 

U,= E w i p u ,  

W ,  = - Ev, 

E, = -U, 

are used to describe phenomena in non-linear optics, namely the theory of optical 
self-induced transparency. These equations were first derived by Eilbeck et al (1973). 
They are solved by the inverse scattering method by Gibbon et a1 (1973) and by Hirota’s 
method in some detail by Caudrey et al (1974). 

In this paper we demonstrate that the set of non-linear equations (1.1) passes the 
PainlevC test. Moreover, we derive a Backlund transformation and we give a method 
to construct solutions of the RMB equations. 

The paper is organised as follows. Section 2 is devoted to the PainlevC property. 
In 9 3 we give an application of the PainlevC property to a system of PDES, namely the 
RMB equations, and finally we present a discussion of the results and some conclusions 
in 9 4. 

2. Integrability and the Painlev6 test 

Let us review some facts about ODES. If an ODE does not have movable singularities, 
then the ODE is said to possess the PainlevC property. In other words, if all movable 
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singularities are simple poles or non-movable critical points then the PDE possesses the 
PainlevC property. It is known that an ODE which possesses the PainlevC property is 
integrable (Tabor and Weiss 1981, Chang et al 1982, Bountis et a1 1982). An ODE is 
said to be of Painlev6 type if all its solutions possess the PainlevC property. 

Consider now PDES. Let m be the number of independent variables. Assume that 
the PDE has coefficients which are analytic on C". The PainlevC property is defined 
as follows (Ward 1984): if S is an analytic non-characteristic complex hypersurface in 
C", then every solution of the PDE which is analytic on C"\S is meromorphic on C". 

A weaker form of the Painlevi property was proposed by Weiss et a1 (1983). They 
looked for solutions of the PDE in the form 

s 

U = $Jn Uj&, 
j = O  

where $J is an analytic function whose vanishing defines a non-characteristic hypersur- 
face S. The motivation of the ansatz (2.1) comes from the theory of ODES. 

Inserting the expansion (2.1) into the PDE leads to conditions on n and recursion 
relations for the functions uj which are certain analytic functions of the independent 
variables. The PainlevC property here states that n should be an integer, that the 
recursion relations should be consistent and that the series expansion (2.1) should 
contain the correct number of arbitrary functions. Resonances are those values of j 
at which it is possible to introduce arbitrary functions into the expansion. Notice that 
it may happen that more than one branch arises. An example is the wave equation 
U , ,  - U,, = exp( u )  + exp( - 2 u ) .  The expansion could, a priori, miss some essential sin- 
gularities. This behaviour is well known for ODES. If we study the case with more 
than one field, then the expansion is given by 

Various authors (Chudnovsky et a1 1983, Grauel !985a, b, Steeb et a1 1983, 1984) have 
applied the weaker form (2.1) of the Painlevi property and we use the weaker form 
(2.2) to perform our PainlevC test. 

3. Application to systems of partial differential equations 

In the technique described by Weiss et a1 (1983) the quantities are considered in the 
complex domain. For the sake of simplicity we do not change our notation. The 
PainlevC test of PDES can be performed in the same manner as the singular point 
analysis for ODES (Ablowitz et al 1980). First of all we determine the dominant 
behaviour, i.e. we calculate the exponents nk and expansion coefficients u k o  ( k  = 
1, . . . ,4) .  Inserting ( u1 = U, u2 _= v, u3 = w, u4 = E )  the ansatz 

u k  - &"*UkO (3.1) 

into (1.1) shows that for certain values of nk, two or more terms in the system of R M B  

equations may balance, and the rest can be ignored. We call such terms the leading 
terms. We find 

n ,  = -1, n2 = - 2 ,  n3 = -2, n4= -1. (3.2) 
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There is only one branch. The expansion coefficients U,, U,, w,, Eo are determined by 

(3.3) 

(3.4) 

In the next step we determine the resonances. To do so we introduce (2 .2)  with (3 .2)  
into ( 1 . 1 )  and obtain 
30 a; 

[ + u,( j  - 1)4J-24x] + /L 1 uJ4.’-2 = 0, 
]=o J = o  

( 3 . 5 ~ )  

(3 .5c)  

30 T 

[ E J r 4 J - 1 + E , ( j - l ) @ J - 2 + r ] +  C U , ~ ~ - ~ = O .  ( 3 . 5 d )  

The resonances r are determined from the coefficients with the factors 4’-* in ( 3 . 5 ~ )  
and ( 3 . 5 d ) ,  4J’k-3 in (3 .5b)  and ( 3 . 5 ~ ) .  

and 41-3 we have to put j = r and for the 
coefficients with the factors 4J+k-3 we have to put j = r, k = 0 and j = 0, k = r. From 
(3.5) it follows that 

]=o j = o  

For the coefficients with the factors 

The resonances are determined from the condition that the determinant of the matrix 
on the left-hand side of (3.6) is equal to zero. Taking into account (3 .4) ,  we obtain 

rl = - 1 ,  r2 = 1 ,  r, = 2, r, = 4. (3.7) 
The resonance at rI  = -1  corresponds to the arbitrary (undefined) singularity manifold 
4 = 0 .  

From (3 .5)  we obtain (3 .4)  and 

0 1  0 
0 -4% - 2 i 4 x  24x41 -2i4xx4, - 2i4X4IX 
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This equation arises at the resonance r2 = 1. The solution of (3.8) is given by 
ul = -2idX,, 

w1 = 24x1, (3.9) 
El = -i4;14xx, 

and U, can be chosen arbitrarily. The equations for the expansion coefficients U,, U,, 
w,, E ,  are determined by the recursion relations 

( 3 . 1 0 ~ )  

U ( m  - 1 )x - (2 - m)um4x - C E/w( m-1) - p u ( m  -2)  = 0, (3.10b) 

w( m - l ) x  - (2 - ( 3 . 1 0 ~ )  

E(m-1,t+(m-1)Em4t+um = O ,  (3.10d) 
where m a  1 for ( 3 . 1 0 ~ )  and (3.10d) and m 3 2  for (3.10b) and ( 3 . 1 0 ~ )  hold. At the 
resonance r, = 2 we find that two of the four resulting equations are identical. We find 
that U?: or E2 can be chosen arbitrarily. If we choose E2 as the arbitrary functim, then 
it follows that 

m - t )x + ( m - 1 ) u m 4 x  + CL om = 0, 
m 

J =O 

m 

/ = 0  
)wm4x - 2 E,ucm-J, = 0, 

u2=  - 4 t E 2 - i 4 i 2 4 x x 4 x 1  +i4i14Xx, 

U 2  = - P b ; l u 2  - 4;1ulx, 

w2 = iu2 - p24;‘4,. 
The four fields u 3 ,  U,, w , ,  E ,  are determined by 

24.x I* 0 0 - u 2 x  

4x -2i& 24x41 - ~ 2 ~ +  E ~ w , +  E ~ w ~ + / . L u ~  

At the  resonance r, = 4 and we have the following set of equations: 

. (3.13u, b, c, d )  I -U,, 

- u , ~  + E ~ w I  + El W ,  + E 2 ~ 2  + / L U ~  

- ~ 3 ~  - E , U ~ -  E 2 ~ 2  
- & r  

The equations (3.13b) and ( 3 . 1 3 ~ )  are equal and  therefore three equations remain for 
the fields U,, u4, w,, E,. Consequently (1.1) passes the Painlevt test, i.e. we have an  
expansion of the form (2.4) in which four ‘expansion coefficients’ can be chosen 
arbitrarily. By a cut-off of the series (2.4) we find a Backlund transform. Requiring 

(3.14) 
yields 

U, = 0, j 3 2, U, = 0, j 3 3, w, = 0, j 5 3, E, = 0, j 5 2 

U = 2 i ~ 4 ~ 4 - ‘ +  U,, 

U = ~ ~ ~ , ~ , ~ - ~ + U ~ ~ - ~ + U ~ ,  

(3.11) 

(3.12) 

w = -24x414-2+ w , 4 - ’ +  w2, 

V I ,  - EOW~ - El ~ 1  -/,Lu, = 0,  
E = 2i4&-’ + El, 

W I X  + EOU, + E ,  U, = 0,  

(3.15) 
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and 
v ,  = -2i&, WI = 2&f, E ,  = -i4;'(6xx. 

The functions ul ,  v2,  w2, E ,  satisfy (1.1). 
The functions U,,  U,, w,, Eo are now given by 

U0 = 2iP4f, vo = 2i4X4f9 

w, = iv, E,  = 2i4x. 
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(3.16) 

(3.17) 

We can calculate the arbitrary function U,. To do  so we insert the functions U,, E,, 
U,, w,  and E ,  into (3.15). We obtain 

(3.18) 

If we insert v2 and w2 into (1.1) for the functions U,, u2, w2 and E ,  then it follows that 

U1 = iP4;16xf. (3.19) 

Consequently 

U = 2ip4,4- '  - ip4;14Xf, 
= 2i4x4f~-2-2i4xf~- ' - i4;24xx~xf +i4;'+af, (3.20) 

w = i v  - p2b;'4f,  E =2i4x4-1-i4;'~xx, 
and 4 satisfies 

{4,x)f+cL2!4f/4x)x =o. (3.21) 

The symbol {4, x} characterises the Schwarzian derivative (Hille 1976) which is given 

{4, X I  = 4xxx4;,-2(4xx/4x)2. (3.22) 

Equation (3.22) is invariant under the Moebius group (Schwerdtfeger 1979). That is, 
if 4 satisfies (3.22), then 

(3.23) 

also satisfies (3.22). The Schwarzian derivative result and its significance in the PDE 

context were first pointed out by Weiss (1983). 
We have expressed the fields U, U, w and E in terms of 4. The field is restricted 

by the condition (3.21). Therefore, we must find solutions of (3.21) to obtain solutions 
of the RMB equations (1.1) for the fields U, U, w and E in (3.20). Solutions can be 
found by Hirota's method (1976). A solution is given by 

by 

CL = (a4 + b)/(c4 + d ) ,  ad - bc # 0, 

4 = 1 +exp(x+ q,( t )  + c,) 
and for the electromagnetic wave 

(3.24) 

E = - ( p  sin  COS hl+cos v), (3.25) 

where 7 and 5 are real quantities. If we take into account that 7 and 5 are real 
quantities, consequently we have E = - p  sech 5 and this special solution can be 
identified with a solution which is given by Bullough et a1 (1979). More about the 
PainlevC property and Hirota's method can be found in the recent paper of Radmore 
er a1 (1984). 
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4. Summary and conclusion 

We have discussed the reduced Maxwell-Bloch equation and we found that the PainlevC 
property is a valuable analytical test for the integrability of systems of PDES. We found 
that the reduced Maxwell-Bloch system in the sharp line limit possesses the PainlevC 
property and this means that the system of PDES is integrable. Moreover, we found a 
Backlund transformation and it is found that the equation for the ‘singular surface’ 
can be expressed in terms of the Schwarzian derivative. This equation is invariant 
under the Moebius group. Finally we have given a solution for the field 4. 

It is conjectured that if a non-linear PDE of a system possesses the PainlevC property, 
then we conclude that this equation is integrable. On the other hand we cannot 
conclude, in general, that a PDE which is integrable has the PainlevC property. 
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